Lecture 7
Face Detection and Recognition

Lin ZHANG, PhD
School of Software Engineering
Tongji University
Spring 2016
Any faces contained in the image?
Who are they?

Barack Hussein Obama II, Aug. 04, 1961~
Vladimir Putin, Oct. 07, 1952~
Outline

• Overview
• Face detection
 • Introduction
 • Viola-Jones method
• Face recognition
 • Pre-requisite
 • Principal Component Analysis
 • Eigen-face based approach
 • Sparse representation based approach
 • Collaborative representation based approach
Overview

• Face recognition problem
 – Given a still image or video of a scene, identify or verify one or more persons in this scene using a stored database of facial images
Overview

• Face identification

Who is this person?

He is David.
Overview

- Face verification

Is he who he claims to be?

I am David.

Yes, he is.
Overview

• Applications of face detection & recognition
Overview

• Applications of face detection & recognition

Hong Kong—Luohu, border control
E-channel
Overview

• Applications of face detection&recognition

National Stadium, Beijing Olympic Games, 2008
Overview

- Applications of face detection & recognition

Check on work attendance
Overview

• Applications of face detection & recognition

Smile detection: embedded in most modern cameras
Overview

• Why is face recognition so difficult?
 • Intra-class variance and inter-class similarity

Images of the same person
Overview

• Why is face recognition so difficult?
 • Intra-class variance and inter-class similarity

Images of twins
Overview

Who are they?
Overview

• Different capturing modals

Normal lighting Infrared lighting 3D

Our focus!
Overview-General Architecture
Outline

• Overview

• Face detection
 • Introduction
 • AdaBoost
 • Viola-Jones method

• Face recognition
 • Math pre-requisite
 • Principal Component Analysis
 • Eigen-face based approach
 • Sparse representation based approach
 • Collaborative representation based approach
Introduction

• Identify and locate human faces in an image regardless of their
 • Position
 • Scale
 • Orientation
 • pose (out-of-plane rotation)
 • illumination
Introduction

Where are the faces, if any?
Introduction

• Why face detection is so difficult?
Introduction

• Appearance based methods
 • Train a classifier using positive (and usually negative) examples of faces
 • Representation: different appearance based methods may use different representation schemes
 • Most of the state-of-the-art methods belong to this category

The most successful one: Viola-Jones method!

VJ is based on AdaBoost classifier
Outline

• Overview

• Face detection
 • Introduction
 • AdaBoost
 • Viola-Jones method

• Face recognition
 • Pre-requisite
 • Principal Component Analysis
 • Eigen-face based approach
 • Sparse representation based approach
 • Collaborative representation based approach
AdaBoost (Adaptive Boosting)

- It is a machine learning algorithm\[^1\]
- AdaBoost is adaptive in the sense that subsequent classifiers built are tweaked in favor of those instances misclassified by previous classifiers
- The classifiers it uses can be weak, but as long as their performance is slightly better than random they will improve the final model

\[^1\] Y. Freund and R.E. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995
AdaBoost (Adaptive Boosting)

- AdaBoost is an algorithm for constructing a "strong" classifier as a linear combination of simple weak classifiers,

\[f(x) = \sum_{t=1}^{T} \alpha_t h_t(x) \]

- Terminology
 - \(h_t(x) \) is a weak or basis classifier
 - \(H(x) = \text{sgn}(f(x)) \) is the final strong classifier
AdaBoost (Adaptive Boosting)

• AdaBoost is an iterative training algorithm, the stopping criterion depends on concrete applications.

• For each iteration t
 – A new weak classifier $h_t(x)$ is added based on the current training set.
 – Modify the weight for each training sample; the weight for the sample being correctly classified by $h_t(x)$ will be reduced, while the sample being misclassified by $h_t(x)$ will be increased.
AdaBoost (algorithm for binary classification)

Given:
- Training set \((x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\), where \(y_i \in \{-1, +1\}\)

Initialize weights for samples \(D_1(i) = 1 / m\)

For \(t = 1:T\)

Train weak classifier based on training set and the \(D_t\)

find the best weak classifier \(h_t\) with error \(\varepsilon_t = \sum_{i=1}^{m} D_t(i) [h_t(x_i) \neq y_i]\)

if \(\varepsilon_t \geq 0.5\), stop;

set \(\alpha_t = 0.5 \ln \left(\frac{(1 - \varepsilon_t)}{\varepsilon_t} \right)\)

update weights for samples \(D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{\text{Denom}}\)

Outputs the final classifier,

\[H(x) = \text{sgn} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]
AdaBoost—An Example

- 10 training samples
- Weak classifiers: vertical or horizontal lines
- Initial weights for samples
 \[D_1(i) = 0.1, \ i = 1 \sim 10 \]
- Three iterations
AdaBoost—An Example

After iteration one
Get the weak classifier $h_1(x)$

$\varepsilon_1 = 0.3$

$\alpha_1 = \frac{1}{2} \ln \frac{1 - \varepsilon_1}{\varepsilon_1} = 0.4236$

update weights
AdaBoost—An Example

After iteration 2
Get the weak classifier $h_2(x)$

$$\epsilon_2 = 0.2142$$

$$\alpha_2 = \frac{1}{2} \ln \frac{1 - \epsilon_2}{\epsilon_2} = 0.6499$$

update weights
AdaBoost—An Example

After iteration 3
Get the weak classifier $h_3(x)$

$\epsilon_3 = 0.1362$

$\alpha_3 = \frac{1}{2} \ln \frac{1-\epsilon_3}{\epsilon_3} = 0.9236$

Now try to classify the 10 samples using $H(x)$
Outline

• Overview

• Face detection
 • Introduction
 • AdaBoost
 • Viola-Jones method

• Face recognition
 • Pre-requisite
 • Principal Component Analysis
 • Eigen-face based approach
 • Sparse representation based approach
 • Collaborative representation based approach
Viola-Jones face detection

• VJ face detector[1]
 • Harr-like features are proposed and computed based on \textit{integral image}; they act as “weak” classifiers
 • Strong classifiers are composed of “weak” classifiers by using AdaBoost
 • Many strong classifiers are combined in a cascade structure which dramatically increases the detection speed

[1] P. Viola and M.J. Jones, “Robust real-time face detection”, IJCV, 2004
Harr features

• Compute the difference between the sums of pixels within two (or more) rectangular regions

Example Harr features shown relative to the enclosing face detection window
Harr features

- Integral image
 - The integral image at location \((x, y)\) contains the sum of all the pixels above and to the left of \(x, y\), inclusive:
 \[
 ii(x, y) = \sum_{x' \leq x, y' \leq y} i(x', y')
 \]
 where \(i(x, y)\) is the original image
 - By the following recurrence, the integral image can be computed in one pass over the original image
 \[
 s(x, y) = s(x, y - 1) + i(x, y)
 \]
 \[
 ii(x, y) = ii(x - 1, y) + s(x, y)
 \]
 where \(s(x, y)\) is the cumulative row sum, \(s(x, -1) = 0\), and \(ii(-1, y) = 0\)
Harr features

- Haar feature can be efficiently computed by using integral image

Actually,

\[
\begin{align*}
ii(x_1) &= A \\
ii(x_2) &= A + B \\
ii(x_3) &= A + C \\
ii(x_4) &= A + B + C + D
\end{align*}
\]

\[D = ii(x_4) + ii(x_1) - ii(x_2) - ii(x_3) \]
Harr features

- Haar feature can be efficiently computed by using integral image

How to calculate \(A - B \) in integral image?
Harr features

- Given a detection window, tens of thousands of Harr features can be computed.
- One Harr feature is a weak classifier to decide whether the underlying detection window contains face.

\[h(x, f, p, t) = \begin{cases}
1, & pf(x) < p\theta \\
-1, & \text{otherwise}
\end{cases} \]

where \(x \) is the detection window, \(f \) defines how to compute the Harr feature on window \(x \), \(p \) is 1 or -1 to make the inequalities have a unified direction, \(\theta \) is a threshold.

- \(f \) can be determined in advance; by contrast, \(p \) and \(\theta \) are determined by training, such that the minimum number of examples are misclassified.
The first and second best Harr features. The first feature measures the difference in intensity between the region of the eyes and a region across the upper cheeks. The feature capitalizes on the observation that the eye region is often darker than the cheeks. The second feature compares the intensities in the eye regions to the intensity across the bridge of the nose.
From weak learner to stronger learner

- Any single Harr feature (thresholded single feature) is quite weak on deciding whether the underlying detection window contains face or not
- Many Harr features (weak learners) can be combined into a strong learner by using Adaboost
- However, the most straightforward technique for improving detection performance, adding more features to the classifier, directly increases computation cost

Construct a cascade classifier
Cascade classifier

• Motivations
 • Within an image, most sub-images are non-face instances
 • Use smaller and efficient classifiers to reject many negative examples at early stage while detecting almost all the positive instances
 • Simpler classifiers are used to reject the majority of sub-windows; more complex classifiers are used at later stage to examine difficult cases
• Our aim: rejection cascade

The initial classifier eliminates a large number of negative examples with very little processing. Subsequent layers eliminate additional negatives but require additional computation. After several stages, the number of remained detection windows has been reduced radically.
Cascade classifier

• Terminologies
 • Detection rate:

 \[
 \frac{\text{true positives} \text{ (real faces detected)}}{\text{true positives} + \text{false negatives} \text{ (number of all faces)}}
 \]

 • False positive rate (FPR),

 \[
 \frac{\text{false positives} \text{ (false faces detected)}}{\text{false positives} + \text{true negatives} \text{ (number of non-face samples)}}
 \]
Cascade classifier

Given a trained cascade of classifiers, the FPR of the cascade is,

\[F = \prod_{i=1}^{K} f_i \]

where \(K \) is the number of stages, and \(f_i \) is the FPR of the \(i \)th stage on the samples that get through to it.

The detection rate of the cascade is,

\[D = \prod_{i=1}^{K} d_i \]

where \(d_i \) is the detection rate of the \(i \)th stage on the samples that get through to it.
Data used for training

- A large number of normalized face samples
 - Having the same size

- A large number of non-face samples
Training Strategy

- VJ cascaded face detector training strategy
 - User sets the maximum acceptable false positive rate and the minimum acceptable detection rate for each layer
 - Each layer of cascade is trained by AdaBoost with the number of features used being increased until the target detection and false positive rates are met for this level
 - The detection rate and FPR are determined by testing the current cascade detector on a validation set
 - If the overall target FPR is not met then another layer is added to the cascade
 - The negative set for training subsequent layers is obtained by collecting all false detections found by running the current cascade on a set of images containing no face instances
User selects values for f, the maximum acceptable false positive rate per layer and d, the minimum acceptable detection rate per layer.

User selects target overall false positive rate, F_{target}.

$P =$ set of positive examples

$N =$ set of negative examples

$F_0 = 1.0; D_0 = 1.0$

$i = 0$

while $F_i > F_{target}$

- $i \leftarrow i + 1$
- $n_i = 0; F_i = F_{i-1}$
- while $F_i > f \times F_{i-1}$

 * $n_i \leftarrow n_i + 1$
 * Use P and N to train a classifier with n_i features using AdaBoost
 * Evaluate current cascaded classifier on validation set to determine F_i and D_i.
 * Decrease threshold for the ith classifier until the current cascaded classifier has a detection rate of at least $d \times D_{i-1}$ (this also affects F_i)

- $N \leftarrow \emptyset$

- If $F_i > F_{target}$ then evaluate the current cascaded detector on the set of non-face images and put any false detections into the set N
Viola-Jones face detection

• Implementation
 • VJ face detector has been implemented in OpenCV and Matlab
 • OpenCV has also provided the training result from a frontal face dataset and the result is contained in “haarcascade_frontalface_alt2.xml”
 • A demo program has been provided on our course website: FaceDetectionEx
Viola-Jones face detection

• Demo time: some examples
Viola-Jones face detection

• Demo time: some examples
Viola-Jones face detection

• Summary
 • Three main components
 • Integral image: efficient convolution
 • Use Adaboost for feature selection
 • Use Adaboost to learn the cascade classifier
 • Properties
 • Fast and fairly robust; runs in real time
 • Very time consuming in training stage (may take days in training)
 • Requires lots of engineering work
Outline

- Overview

- Face detection
 - Introduction
 - AdaBoost
 - Viola-Jones method

- Face recognition
 - Pre-requisite
 - Principal Component Analysis
 - Eigen-face based approach
 - Sparse representation based approach
 - Collaborative representation based approach
Pre-requisite: Lagrange multiplier

• Single-variable function

\(f(x) \) is differentiable in \((a, b)\). At \(x_0 \in (a, b) \), \(f(x) \) achieves an extremum

\[
\frac{df}{dx} \bigg|_{x_0} = 0
\]

• Two-variables function

\(f(x, y) \) is differentiable in its domain. At \((x_0, y_0)\), \(f(x, y) \) achieves an extremum

\[
\frac{\partial f}{\partial x} \bigg|_{(x_0, y_0)} = 0, \quad \frac{\partial f}{\partial y} \bigg|_{(x_0, y_0)} = 0
\]
Pre-requisite: Lagrange multiplier

• In general case

If \mathbf{x}_0 is a stationary point of $f(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^{n \times 1}$

\[
\frac{\partial f}{\partial x_1} \bigg|_{x_0} = 0, \quad \frac{\partial f}{\partial x_2} \bigg|_{x_0} = 0, \ldots, \quad \frac{\partial f}{\partial x_n} \bigg|_{x_0} = 0
\]
Pre-requisite: Lagrange multiplier

- Lagrange multiplier is a strategy for finding the local extremum of a function subject to equality constraints.

Problem: find stationary points for \(y = f(x), x \in \mathbb{R}^{n \times 1} \)
under \(m \) constraints \(g_k(x) = 0, k = 1, 2, \ldots, m \).

Solution:
\[
F(x; \lambda_1, \ldots, \lambda_m) = f(x) + \sum_{k=1}^{m} \lambda_k g_k(x)
\]
If \((x_0, \lambda_{10}, \lambda_{20}, \ldots, \lambda_{m0})\) is a stationary point of \(F\), then,
\(x_0\) is a stationary point of \(f(x)\) with constraints.

Joseph-Louis Lagrange
Jan. 25, 1736~Apr. 10, 1813
Pre-requisite: Lagrange multiplier

- Lagrange multiplier is a strategy for finding the local extremum of a function subject to equality constraints.

Problem: find stationary points for $y = f(x)$, $x \in \mathbb{R}^{n \times 1}$ under m constraints $g_k(x) = 0, k = 1, 2, \ldots, m$

Solution:

$$F(x; \lambda_1, \ldots, \lambda_m) = f(x) + \sum_{k=1}^{m} \lambda_k g_k(x)$$

$(x_0, \lambda_1, \ldots, \lambda_{m_0})$ is a stationary point of F

$$\frac{\partial F}{\partial x_1} = 0, \frac{\partial F}{\partial x_2} = 0, \ldots, \frac{\partial F}{\partial x_n} = 0, \frac{\partial F}{\partial \lambda_1} = 0, \frac{\partial F}{\partial \lambda_2} = 0, \ldots, \frac{\partial F}{\partial \lambda_m} = 0$$

at that point

$n + m$ equations!
Pre-requisite: Lagrange multiplier

• Example

Problem: for a given point $p_0 = (1, 0)$, among all the points lying on the line $y = x$, identify the one having the least distance to p_0.

The distance is

$$f(x, y) = (x - 1)^2 + (y - 0)^2$$

Now we want to find the stationary point of $f(x, y)$ under the constraint $g(x, y) = y - x = 0$

According to Lagrange multiplier method, construct another function

$$F(x, y, \lambda) = f(x) + \lambda g(x) = (x - 1)^2 + y^2 + \lambda(y - x)$$

Find the stationary point for $F(x, y, \lambda)$
Pre-requisite: Lagrange multiplier

• Example

Problem: for a given point \(p_0 = (1, 0) \), among all the points lying on the line \(y = x \), identify the one having the least distance to \(p_0 \).

\[
\begin{align*}
\frac{\partial F}{\partial x} &= 0 \\
\frac{\partial F}{\partial y} &= 0 \\
\frac{\partial F}{\partial \lambda} &= 0
\end{align*}
\]

\[
\begin{align*}
2(x - 1) + \lambda &= 0 \\
2y - \lambda &= 0 \\
x - y &= 0
\end{align*}
\]

\((0.5, 0.5, 1) \) is a stationary point of \(F(x, y, \lambda) \)

\((0.5, 0.5) \) is a stationary point of \(f(x, y) \) under constraints
Outline

• Overview

• Face detection
 • Introduction
 • Viola-Jones method

• Face recognition
 • Pre-requisite
 • Principal Component Analysis
 • Eigen-face based approach
 • Sparse representation based approach
 • Collaborative representation based approach
Principal Component Analysis (PCA)

- PCA: converts a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components
- This transformation is defined in such a way that the first principal component has the largest possible variance, and each succeeding component in turn has the highest variance possible under the constraint that it be orthogonal to (i.e., uncorrelated with) the preceding components
Principal Component Analysis (PCA)

- Illustration

\[
\begin{align*}
&x, \ y \\
&(2.5, 2.4) \\
&(0.5, 0.7) \\
&(2.2, 2.9) \\
&(1.9, 2.2) \\
&(3.1, 3.0) \\
&(2.3, 2.7) \\
&(2.0, 1.6) \\
&(1.0, 1.1) \\
&(1.5, 1.6) \\
&(1.1, 0.9)
\end{align*}
\]

Along which orientation the data points scatter most?

De-correlation!

How to find?

Lin ZHANG, SSE, 2016
Principal Component Analysis (PCA)

• Identify the orientation with largest variance

Suppose X contains n data points, and each data point is p-dimensional, that is

$$X = \{x_1, x_2, \ldots, x_n\}, x_i \in \mathbb{R}^{p \times 1}, X \in \mathbb{R}^{p \times n}$$

Now, we want to find such a unit vector α_1, such that

$$\alpha_1 = \arg \max_{\alpha} \left(\text{var} \left(\alpha^T X \right) \right), \alpha \in \mathbb{R}^{p \times 1}$$
Principal Component Analysis (PCA)

- Identify the orientation with largest variance

\[
\text{var}(\alpha^T \mathbf{X}) = \frac{1}{n-1} \sum_{i=1}^{n} (\alpha^T \mathbf{x}_i - \alpha^T \mu)^2 = \frac{1}{n-1} \sum_{i=1}^{n} \alpha^T (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^T \alpha
\]

\[
= \alpha^T \mathbf{C} \alpha
\]

(Note that: \(\alpha^T (\mathbf{x}_i - \mu) = (\mathbf{x}_i - \mu)^T \alpha \))

where \(\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \)

and \(\mathbf{C} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^T \) is the covariance matrix
Principal Component Analysis (PCA)

- Identify the orientation with largest variance

Since α is unit, $\alpha^T \alpha = 1$

Based on Lagrange multiplier method, we need to,

$$\arg \max_{\alpha} \left(\alpha^T C \alpha - \lambda (\alpha^T \alpha - 1) \right)$$

$$0 = \frac{\frac{d}{d\alpha} \left(\alpha^T C \alpha - \lambda (\alpha^T \alpha - 1) \right)}{d\alpha} = 2 C \alpha - 2 \lambda \alpha \Rightarrow C \alpha = \lambda \alpha$$

α is C's eigen-vector

Since,

$$\max \left(\text{var} \left(\alpha^T X \right) \right) = \max \left(\alpha^T C \alpha \right) = \max \left(\alpha^T \lambda \alpha \right) = \max \left(\lambda \right)$$

Thus,
Principal Component Analysis (PCA)

• Identify the orientation with largest variance

Thus, α_1 should be the eigen-vector of C corresponding to the largest eigen-value of C

What is another orientation α_2, orthogonal to α_1, and along which the data can have the second largest variation?

Answer: it is the eigen-vector associated to the second largest eigen-value λ_2 of C and such a variance is λ_2

Assignment!
Principal Component Analysis (PCA)

• Identify the orientation with largest variance

Results: the eigen-vectors of C forms a set of orthogonal basis and they are referred as **Principal Components** of the original data X

You can consider PCs as a set of orthogonal coordinates. Under such a coordinate system, variables are not correlated.
Principal Component Analysis (PCA)

- Express data in PCs

Suppose \(\{\alpha_1, \alpha_2, \ldots, \alpha_p\} \) are PCs derived from \(X, X \in \mathbb{R}^{p \times n} \)

Then, a data point \(x_i \in \mathbb{R}^{p \times 1} \) can be linearly represented by \(\{\alpha_1, \alpha_2, \ldots, \alpha_p\} \), and the representation coefficients are

\[
c_i = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_p^T \end{pmatrix} x_i
\]

Actually, \(c_i \) is the coordinates of \(x_i \) in the new coordinate system spanned by \(\{\alpha_1, \alpha_2, \ldots, \alpha_p\} \)
Principal Component Analysis (PCA)

• Summary

\(\mathbf{X} \in \mathbb{R}^{p \times n} \) is a data matrix, each column is a data sample

Suppose each of its feature has zero-mean

\[
\text{cov}(\mathbf{X}) = \frac{1}{n-1} \mathbf{XX}^T \equiv \mathbf{U} \Sigma \mathbf{U}^T
\]

\(\mathbf{U} = \begin{bmatrix} \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \end{bmatrix} \) spans a new space

Data in new space is represented as \(\mathbf{X}' = \mathbf{U}^T \mathbf{X} \)

In new space, dimensions of data are not correlated
Principal Component Analysis (PCA)

- Illustration

\[\mathbf{X} = \begin{pmatrix} 2.5 & 0.5 & 2.2 & 1.9 & 3.1 & 2.3 & 2.0 & 1.0 & 1.5 & 1.1 \\ 2.4 & 0.7 & 2.9 & 2.2 & 3.0 & 2.7 & 1.6 & 1.1 & 1.6 & 0.9 \end{pmatrix} \]

\[\text{cov}(\mathbf{X}) = \begin{pmatrix} 5.549 & 5.539 \\ 5.539 & 6.449 \end{pmatrix} \]

- Eigen-values = 11.5562, 0.4418

- Corresponding eigen-vectors:

\[\mathbf{\alpha}_1 = \begin{pmatrix} 0.6779 \\ 0.7352 \end{pmatrix} \]

\[\mathbf{\alpha}_2 = \begin{pmatrix} -0.7352 \\ 0.6779 \end{pmatrix} \]
Principal Component Analysis (PCA)

• Illustration
Principal Component Analysis (PCA)

• Illustration

Coordinates of the data points in the new coordinate system

\[
\text{new } C = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \end{pmatrix} \mathbf{X}
\]

\[
\begin{pmatrix}
0.6779 & 0.7352 \\
-0.7352 & 0.6779
\end{pmatrix}
-0.211 & 0.107 & 0.348 & 0.094 & -0.245 & 0.139 & -0.386 & 0.011 & -0.018 & -0.199
\end{pmatrix}
\]
Principal Component Analysis (PCA)

• Illustration

Coordinates of the data points in the new coordinate system
Draw $newC$ on the plot

In such a new system, two variables are linearly independent!
Principal Component Analysis (PCA)

- Data dimension reduction with PCA

Suppose \(X = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^{p \times 1}, \{\alpha_i\}_{i=1}^p, \alpha_i \in \mathbb{R}^{p \times 1} \) are the PCs

If all of \(\{\alpha_i\}_{i=1}^p \) are used, \(c_i = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_p^T \end{pmatrix} x_i \) is still \(p \)-dimensional

If only \(\{\alpha_i\}_{i=1}^m, m < p \) are used, \(c_i \) will be \(m \)-dimensional

That is, the dimension of the data is reduced!
Principal Component Analysis (PCA)

• Data dimension reduction with PCA

Suppose $X = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^{p \times 1}$

$$\text{cov}(X) \equiv U \Sigma U^T$$

$U = \left[u_1, u_2, \ldots, u_m, \ldots, u_p \right]$ spans a new space

For dimension reduction, only $u_1 \sim u_m$ are used,

$$U_m = \left[u_1, u_2, \ldots, u_m \right] \in \mathbb{R}^{p \times m}$$

Data in U_m,

$$X_{dr} = \left(U_m\right)^T X \in \mathbb{R}^{m \times n}$$
Principal Component Analysis (PCA)

- Recovering the dimension-reduction data

Suppose \(X_{dr} \in \mathbb{R}^{m \times n} \) are low-dimensional representation of the signals \(X \in \mathbb{R}^{p \times n} \)

How to recover \(X_{dr} \in \mathbb{R}^{m \times n} \) to the original \(p\)-d space?

\[
X_{\text{recover}} = U \begin{bmatrix} x_{dr1}, x_{dr2}, \ldots, x_{drn} \\ 0 & 0 & 0 \\ \vdots \\ 0 & 0 & 0 \end{bmatrix}_{p-m} = U_m X_{dr}
\]
Principal Component Analysis (PCA)

• Illustration

Coordinates of the data points in the new coordinate system

\[newC = \begin{pmatrix} 0.6779 & 0.7352 \\ -0.7352 & 0.6779 \end{pmatrix} X \]

If only the first PC (corresponds to the largest eigen-value) is remained

\[newC = \begin{pmatrix} 0.6779 & 0.7352 \end{pmatrix} X
= (3.459 \ 0.854 \ 3.623 \ 2.905 \ 4.307 \ 3.544 \ 2.532 \ 1.487 \ 2.193 \ 1.407) \]
Principal Component Analysis (PCA)

• Illustration

All PCs are used

Only 1 PC is used

Dimension reduction!
Principal Component Analysis (PCA)

• Illustration

If only the first PC (corresponds to the largest eigen-value) is remained

\[newC = \begin{pmatrix} 0.6779 & 0.7352 \end{pmatrix} \begin{pmatrix} 3.459 & 0.854 & 3.623 & 2.905 & 4.307 & 3.544 & 2.532 & 1.487 & 2.193 & 1.407 \end{pmatrix} \]

How to recover \(newC \) to the original space? Easy

\[\begin{pmatrix} 0.6779 & 0.7352 \end{pmatrix}^T newC \]
\[= \begin{pmatrix} 0.6779 \\ 0.7352 \end{pmatrix} \begin{pmatrix} 3.459 & 0.854 & 3.623 & 2.905 & 4.307 & 3.544 & 2.532 & 1.487 & 2.193 & 1.407 \end{pmatrix} \]
Principal Component Analysis (PCA)

• Illustration

Data recovered if only 1 PC used

Original data
PCA Whitening

- Whitening is needed for some algorithms
- For whitening, we require that
 - The features are uncorrelated
 - The features all have the same variance

Data in new space by using PCA,

\[x' = U^T x \]

To make each dimension of the data have unit variance,

\[x_i' \leftarrow \frac{1}{\sqrt{\lambda_i}} x_i', i = 1 \sim p \]

where \(\lambda_i \) is the \(i \)th eigen-value of \(\text{Cov}(X) \)
PCA Whitening)

• Whitening in matrix form

Suppose \(\mathbf{X} = \{ \mathbf{x}_i \}_{i=1}^{n}, \mathbf{x}_i \in \mathbb{R}^{p \times 1} \),

\[
\text{cov}(\mathbf{X}) \equiv \mathbf{U}\Sigma\mathbf{U}^T = \mathbf{U} \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \end{bmatrix} \mathbf{U}^T
\]

Whitened data is,

\[
\mathbf{X}_{\text{whitened}} = \left(\Sigma \right)^{-\frac{1}{2}} \mathbf{U}^T \mathbf{X} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} \\ \frac{1}{\sqrt{\lambda_2}} \\ \vdots \\ \frac{1}{\sqrt{\lambda_p}} \end{bmatrix} \mathbf{U}^T \mathbf{X}
\]
PCA Whitening

• Whitening in matrix form
• Consider: what is the characteristic of the data’s covariance matrix after whitening?
PCA Whitening

• Whitening combined with dimension reduction

Suppose \(\mathbf{X} = \{\mathbf{x}_i \}_{i=1}^{n}, \mathbf{x}_i \in \mathbb{R}^{p \times 1}, \)

\[
\text{cov}(\mathbf{X}) \equiv \mathbf{U} \Sigma \mathbf{U}^T = \mathbf{U} \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \end{bmatrix} \mathbf{U}^T
\]

\[
\mathbf{X}_{\text{whitened-dimreduct}} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} & & \\ & \ddots & \\ & & \frac{1}{\sqrt{\lambda_m}} \end{bmatrix} \mathbf{U}_m^T \mathbf{X}, m < p
\]
Outline

• Overview
• Face detection
 • Introduction
 • Viola-Jones method
• Face recognition
 • Pre-requisite
 • Principal Component Analysis
 • Eigen-face based approach
 • Sparse representation based approach
 • Collaborative representation based approach
Eigen-face based face recognition

• Proposed in [1]
• Key ideas
 • Images in the original space are highly correlated
 • So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs
 • Use PCA for estimating the sub-space (dimensionality reduction)
 • Compare two faces by projecting the images into the subspace and measuring the Euclidean distance between them

Eigen-face based face recognition

• Training period
 • Step 1: prepare images \(\{ x_i \} \) for the training set
 • Step 2: compute the mean image and covariance matrix
 • Step 3: compute the eigen-faces (eigen-vectors) from the covariance matrix and only keep \(M \) eigen-faces corresponding to the largest eigenvalues; these \(M \) eigen-faces \((u_1, u_2, \ldots, u_M)\) define the face space
 • Step 4: compute the representation coefficients of each training image \(x_i \) on the \(M \)-d subspace

\[
 r_i = \begin{pmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_M^T \end{pmatrix} x_i
\]
Eigen-face based face recognition

• Testing period
 • Step 1: project the test image onto the M-d subspace to get the representation coefficients
 • Step 2: classify the coefficient pattern as either a known person or as unknown (usually Euclidean distance is used here)
Eigen-face based face recognition

• One technique to perform eigen-value decomposition to a large matrix

If each image is 100×100, the covariance matrix C is 10000×10000
It is formidable to perform PCA for a so large matrix
However the rank of the covariance matrix is limited by the number of training examples: if there are n training examples, there will be at most $n-1$ eigenvectors with non-zero eigenvalues.

Usually, the number of training examples is much smaller than the dimensionality of the images.
Eigen-face based face recognition

• One technique to perform eigen-value decomposition to a large matrix

Principal components can be computed more easily as follows,

Let \(X \in \mathbb{R}^{p \times n} \) be the matrix of preprocessed \(n \) training examples, where each column (\(p-d \)) contains one mean-subtracted image; \((p \gg n) \)

The corresponding covariance matrix is \(\frac{1}{n-1}XX^T \in \mathbb{R}^{p \times p} \); very large

Instead, we perform eigen-value decomposition to \(X^T X \in \mathbb{R}^{n \times n} \)

\[
X^T Xv_i = \lambda_i v_i
\]

Pre-multiply \(X \) on both sides

\[
XX^T Xv_i = \lambda_i Xv_i
\]

\(Xv_i \) is the eigen-vector of \(XX^T \)
• Example— training stage

4 classes, 8 samples altogether
Vectorize the 8 images, and stack them into a data matrix X
Compute the eigen-faces (PCs) based on X
In this example, we retain the first 6 eigen-faces to span the sub-space
Eigen-face based face recognition

• Example—training stage

If reshaping in the matrix form, 6 eigen-faces appear as follows:

Then, each training face is projected to the learned sub-space:

\[
\mathbf{r}_i = \begin{pmatrix}
\mathbf{u}_1^T \\
\mathbf{u}_2^T \\
\vdots \\
\mathbf{u}_6^T \\
\end{pmatrix} \mathbf{x}_i
\]
Eigen-face based face recognition

• Example—training stage

If reshaping in the matrix form, 6 eigen-faces appear as follows

\[\mathbf{r}_7 = (0.33 \ -0.74 \ 0.07 \ -0.24 \ 0.28 \ 0.43)^T \]

is the representation vector of the 7th training image.
Eigen-face based face recognition

• Example—testing stage

A new image comes, project it to the learned sub-space \(t = \begin{pmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_6^T \end{pmatrix} \text{testI} \)

\[
= 0.52u_1 + 0.17u_2 - 0.01u_3 - 0.39u_4 + 0.67u_5 - 0.29u_6
\]

\(t = (0.52 \ 0.17 \ -0.01 \ -0.39 \ 0.67 \ 0.29)^T \) is the representation vector of this testing image
Eigen-face based face recognition

• Example—testing stage

\[\| r_1 \|_2 = 1.62, \| r_2 \|_2 = 1.57, \| r_3 \|_2 = 1.70, \| r_4 \|_2 = 1.43, \| r_5 \|_2 = 0.22, \| r_6 \|_2 = 1.18, \| r_7 \|_2 = 1.54, \| r_8 \|_2 = 1.26 \]

This guy should be Lin!
Eigen-face based face recognition

• Example—testing stage

l_2-norm based distance metric

We set threshold = 0.50
This guy does not exist in the dataset!
Outline

• Overview

• Face detection
 • Introduction
 • Viola-Jones method

• Face recognition
 • Pre-requisite
 • Principal Component Analysis
 • Eigen-face based approach
 • Sparse representation based approach
 • Collaborative representation based approach
Sparse representation based approach

• Motivations
 • Signals are sparse in some selected domain
 • It has strong physiological support
Sparse representation based approach

• SR-based face recognition
 • It was proposed in [1]
 • In such a system, the choice of features is no longer crucial
 • It is robust to occlusion and corruption

Sparse representation based approach

• Illustration

\[y \text{ can be linearly represented by the training samples as} \]
\[y = \alpha_{1,1} v_{1,1} + \alpha_{1,2} v_{1,2} + \alpha_{2,1} v_{2,1} + \alpha_{2,2} v_{2,2} \]
\[+ \alpha_{3,1} v_{3,1} + \alpha_{3,2} v_{3,2} + \alpha_{4,1} v_{4,1} + \alpha_{4,2} v_{4,2} \]

We expect that all the coefficients are zero except \(\alpha_{3,1}, \alpha_{3,2} \)
Sparse representation based approach

• Problem formulation

We define a matrix A for the n training samples of all k object classes

$$A = \begin{bmatrix} A_1, A_2, \ldots, A_k \end{bmatrix} = \begin{bmatrix} v_{1,1}, v_{1,2}, \ldots, v_{k,n_k} \end{bmatrix}$$

Then, the linear representation of a testing sample y can be expressed as

$$y = Ax_0$$

where $x_0 = \begin{bmatrix} 0, \ldots, 0, \alpha_{i,1}, \alpha_{i,2}, \ldots, \alpha_{i,n_i}, 0, \ldots, 0 \end{bmatrix}^T \in \mathbb{R}^n$ is a coefficient vector whose entries are zero except those associated with the ith class.
Sparse representation based approach

This motivates us to seek the most sparsest solution to $y = Ax$, solving the following optimization problem:

$$x_0 = \arg \min \|x\|_0, \ s.t., \ \|Ax - y\|_2 \leq \varepsilon \ (1)$$

where $\|\cdot\|_0$ denotes the l_0-norm, which counts the number of non-zero entries in a vector.

However, solving (1) is a NP-hard problem, though some approximation solutions can be found efficiently.

Thus, usually, (1) can be rewritten as a l_1-norm minimization problem
Sparse representation based approach

If the solution x_0 is sparse enough, the solution of l_0-minimization problem is equal to the solution to the following l_1-norm minimization problem:

$$x_0 = \arg \min_x \|x\|_1, \text{ s.t., } \|Ax - y\|_2 \leq \varepsilon \quad (1)$$

The above minimization problem could be solved in polynomial time by standard linear programming methods.

There is an equivalent form for (1)

$$x_0 = \arg \min_x \|y - Ax\|_2^2 + \lambda \|x\|_1 \quad (2)$$

Several different methods for solving l_1-norm minimization problem in the literature, such as the l_1-magic method (refer to the course website)
Sparse representation based approach

Algorithm

1. **Input**: a matrix of training samples
 \[A = [A_1, A_2, \ldots, A_k] \in \mathbb{R}^{m \times n} \] for \(k \) classes; \(y \in \mathbb{R}^m \), a test sample; and an error tolerance \(\varepsilon > 0 \)

2. Normalize the columns of \(A \) to have unit \(l_2 \)-norm

3. Solve the \(l_1 \)-minimization problem
 \[x_0 = \arg \min \| x \|_1, \text{ s.t., } \| Ax - y \|_2 \leq \varepsilon \]

4. Compute the residuals \(r_i(y) = \| y - A \delta_i(x_0) \|_2, \ i = \{1, \ldots, k\} \)

5. **Output**: \(\text{identity}(y) = \arg \min_{i} r_i(y) \)

For \(x \in \mathbb{R}^n \), \(\delta_i(x) \in \mathbb{R}^n \) is a new vector whose only non-zero entries are the entries in \(x \) that are associated with class \(i \)
Sparse representation based approach

- Illustration

A valid test image. Recognition with 12×10 downsampled images as features. The test image y belongs to subject 1. The values of the sparse coefficients recovered are plotted on the right together with the two training examples that correspond to the two largest sparse coefficients.
The residuals $r_i(y)$ of a test image of subject 1 with respect to the projected sparse coefficients $\delta_i(x_0)$ by l_1-minimization.
Sparse representation based approach

• Summary
 • It provides a novel idea for face recognition
 • By solving the sparse minimization problem, the “position” of the big coefficients can indicate the category of the examined image
 • It is robust to occlusion and partial corruption
Outline

• Overview
• Face detection
 • Introduction
 • Viola-Jones method
• Face recognition
 • Pre-requisite
 • Principal Component Analysis
 • Eigen-face based approach
 • Sparse representation based approach
 • Collaborative representation based approach
CRC_RLS

• Collaborative representation based classification with regularized least square was proposed in [1]

• Motivation
 • SRC method is based on l_1-minimization; however, l_1-minimization is time consuming. So, is it really necessary to solve the l_1-minimization problem for face recognition?
 • Is it l_1-minimization or the collaborative representation that makes SRC work?

• Key points of CRC_RLS
 • It is the collaborative representation, not the l_1-norm minimization that makes the SRC method work well for face recognition
 • Thus, the l_1-norm regularization can be relaxed to l_2-norm regularization
CRC_RLS

SRC method:

\[x_0 = \arg \min_x \| y - Ax \|_2^2 + \lambda \| x \|_1 \] \hspace{1cm} (1)

CRC_RLS:

\[x_0 = \arg \min_x \| y - Ax \|_2^2 + \lambda \| x \|_2^2 \] \hspace{1cm} (2)

(1) is not easy to solve; can be solved by iteration methods. However, (2) has a closed-form solution:

\[x_0 = (A^T A + \lambda E)^{-1} A^T y \]

can be pre-computed.

Can you work it out?
Algorithm

1. **Input:** a matrix of training samples
 \[A = [A_1, A_2, ..., A_k] \in \mathbb{R}^{m \times n} \text{ for } k \text{ classes}; \ y \in \mathbb{R}^m, \text{ a test sample}; \]
2. Normalize the columns of \(A \) to have unit \(l_2 \)-norm
3. Pre-compute
 \[P = \left(A^T A + \lambda E \right)^{-1} A^T \]
4. Code \(y \) over \(A \)
 \[x_0 = Py \]
5. Compute the residuals
 \[r_i(y) = \| y - A \delta_i(x_0) \|_2, \ i = \{1, ..., k\} \]
6. **Output:** identity(\(y \)) = argmin\(_i r_i(y) \)

For \(x \in \mathbb{R}^n, \ \delta_i(x) \in \mathbb{R}^n \) is a new vector whose only non-zero entries are the entries in \(x \) that are associated with class \(i \).
By solving CRC_RLS,

\[
\begin{align*}
x_0 &= [-0.10, -0.04, -0.09, 0.16, 0.68, 0.14, 0.06, 0.17]^T \\
r_1 &= \|v_{1,1} \times (-0.10) + v_{1,2} \times (-0.04) - y\|_2 = 1.14 \\
r_2 &= \|v_{2,1} \times (-0.09) + v_{2,2} \times (0.16) - y\|_2 = 0.93 \\
r_3 &= \|v_{3,1} \times (0.68) + v_{3,2} \times (0.14) - y\|_2 = 0.27 \\
r_4 &= \|v_{4,1} \times (0.06) + v_{4,2} \times (0.17) - y\|_2 = 0.79
\end{align*}
\]
CRC_RLS

- CRC_RLS vs. SRC

The coding coefficients of a query sample
CRC_RLS

- CRC_RLS vs. SRC

<table>
<thead>
<tr>
<th>Method</th>
<th>Recognition Rate</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRC(l_1-ls)</td>
<td>0.979</td>
<td>5.3988 s</td>
</tr>
<tr>
<td>SRC(ALM)</td>
<td>0.979</td>
<td>0.128 s</td>
</tr>
<tr>
<td>SRC(FISTA)</td>
<td>0.914</td>
<td>0.1567 s</td>
</tr>
<tr>
<td>SRC(Homotopy)</td>
<td>0.945</td>
<td>0.0279 s</td>
</tr>
<tr>
<td>CRC_RLS</td>
<td>0.979</td>
<td>0.0033 s</td>
</tr>
</tbody>
</table>

Speed-up 8.5 ~ 1636 times

Recognition rate and speed on the Extended Yale B database
Thanks for your attention