Lecture 3
Geometric Transformations and Image Registration

Lin ZHANG, PhD
School of Software Engineering
Tongji University
Spring 2015
Contents

• Transforming points
• Hierarchy of geometric transformations
• Applying geometric transformations to images
• Image registration
Transforming Points

- Geometric transformations modify the spatial relationship between pixels in an image
- The images can be shifted, rotated, or stretched in a variety of ways
- Geometric transformations can be used to
 - create thumbnail views
 - change digital video resolution
 - correct distortions caused by viewing geometry
 - align multiple images of the same scene
Transforming Points

Suppose \((w, z)\) and \((x, y)\) are two spatial coordinate systems

\begin{align*}
\text{input space} & \quad \text{output space} \\

\end{align*}

A geometric transformation \(T\) that maps the input space to output space

\[(x, y) = T[(w, z)]\]

\(T\) is called a \textit{forward transformation} or \textit{forward mapping}

\[(w, z) = T^{-1}[(x, y)]\]

\(T^{-1}\) is called a \textit{inverse transformation} or \textit{inverse mapping}
Transforming Points

\[(x, y) = T[(w, z)] \]

\[(w, z) = T^{-1}[(x, y)] \]
Transforming Points

An example

\[(x, y) = T[(w, z)] = (w/2, z/2)\]

\[(w, z) = T^{-1}[(x, y)] = (2x, 2y)\]
Contents

• Transforming points
• Hierarchy of geometric transformations
• Applying geometric transformations to images
• Image Registration
Hierarchy of Geometric Transformations

• Class I: Isometry transformation

If only rotation and translation are considered

\[
\begin{pmatrix}
x' \\
y'
\end{pmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix} + \begin{pmatrix}
t_1 \\
t_2
\end{pmatrix}
\]

In homogeneous coordinates

\[
\begin{pmatrix}
x' \\
y' \\
1
\end{pmatrix} = \begin{bmatrix}
\cos \theta - \sin \theta & t_1 \\
\sin \theta & \cos \theta & t_2 \\
0 & 0 & 1
\end{bmatrix} \begin{pmatrix}
x \\
y \\
1
\end{pmatrix}
\]

(More concise!)
Hierarchy of Geometric Transformations

• Class I: Isometry transformation

\[
\begin{pmatrix}
 x' \\
 y' \\
 1
\end{pmatrix}
=
\begin{bmatrix}
 \cos \theta & -\sin \theta & t_x \\
 \sin \theta & \cos \theta & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
\]

Properties

• \(R \) is an orthogonal matrix
• Euclidean distance is preserved
• Has three degrees of freedom; two for translation, and one for rotation
Hierarchy of Geometric Transformations

• Class II: Similarity transformation

\[
\begin{pmatrix}
 x' \\
 y' \\
 1
\end{pmatrix} = \begin{bmatrix}
 s \cos \theta - s \sin \theta & t_1 \\
 s \sin \theta & s \cos \theta & t_2 \\
 0 & 0 & 1
\end{bmatrix} \begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
\]

\[
x' = \begin{bmatrix}
 sR & t \\
 0^T & 1
\end{bmatrix} x
\]
Hierarchy of Geometric Transformations

- Class II: Similarity transformation

\[
\begin{pmatrix}
x' \\
y' \\
1
\end{pmatrix}
= \begin{bmatrix}
s \cos \theta - s \sin \theta & t_1 \\
s \sin \theta & s \cos \theta & t_2 \\
0 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
x \\
y \\
1
\end{pmatrix}
\]

\[
\begin{pmatrix}
x' \\
y' \\
1
\end{pmatrix}
= \begin{bmatrix}
0^T & 1
\end{bmatrix}
\begin{pmatrix}
sR & t \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
1
\end{pmatrix}
\]

Properties

- \(R \) is an orthogonal matrix
- Similarity ratio (the ratio of two lengths) is preserved
- Has four degrees of freedom; two for translation, one for rotation, and one for scaling
Hierarchy of Geometric Transformations

- Class III: Affine transformation

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & t_x \\
 a_{21} & a_{22} & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

\[
x' = \begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix} x
\]
Hierarchy of Geometric Transformations

• Class III: Affine transformation

\[
\begin{pmatrix}
x' \\
y' \\
1
\end{pmatrix} =
\begin{bmatrix}
a_{11} & a_{12} & t_x \\
a_{21} & a_{22} & t_y \\
0 & 0 & 1
\end{bmatrix} \begin{pmatrix}
x \\
y \\
1
\end{pmatrix}
\]

\[x' = \begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix} x\]

Properties

• A is a non-singular matrix
• Ratio of lengths of parallel line segments is preserved
• Has six degrees of freedom; two for translation, one for rotation, one for scaling, one for scaling direction, and one for scaling ratio
Hierarchy of Geometric Transformations

- Class IV: Projective transformation

\[c \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]
Hierarchy of Geometric Transformations

• Class IV: Projective transformation

\[
\begin{pmatrix}
x' \\
y' \\
z'
\end{pmatrix} =
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
\]

Properties

Also referred to as homography matrix

• Cross ratio preserved

• Though it has 9 parameters, it has 8 degrees of freedom, since only the ratio is important in the homogeneous coordinates
Contents

• Transforming points
• Hierarchy of geometric transformations
• Applying geometric transformations to images
• Image Registration
Applying Geometric Transformations to Images

Given the image f, apply T to f to get g, how to get g?

The procedure for computing the output pixel at location (x_k, y_k) is

1. Evaluate $(w_k, z_k) = T^{-1}[(x_k, y_k)]$
2. Evaluate $f(w_k, z_k)$
3. $g(x_k, y_k) = f(w_k, z_k)$
Applying Geometric Transformations to Images

• Notes on interpolation
 • Even if \((x_k, y_k)\) are integers, in most cases \((w_k, z_k)\) are not
 • For digital images, the values of \(f\) are known only at integer-valued locations
 • Using these known values to evaluate \(f\) at non-integer valued locations is called as \textit{interpolation}
Applying Geometric Transformations to Images

• Notes on interpolation
 • In Matlab, three commonly used interpolation schemes are built-in, including nearest neighborhood, bilinear, and bicubic
 • For most Matlab routines where interpolation is required, “bilinear” is the default
Applying Geometric Transformations to Images

- Matlab implementation
 - “Maketform” is used to construct a geometric transformation structure
 - “imtransform” transforms the image according to the 2-D spatial transformation defined by tform

Note: in Matlab, geometric transformations are expressed as

\[
\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} A
\]

where \(A\) is a 3 by 3 transformation matrix
Applying Geometric Transformations to Images

• Matlab implementation

An example

```matlab
im = imread('tongji.bmp');
theta = pi/6;
rotationMatrix = [cos(theta) sin(theta) 0;-sin(theta) cos(theta) 0;0 0 1];
tformRotation = maketform('affine',rotationMatrix);

rotatedIm = imtransform(im, tformRotation,'FillValues',255);
figure;
subplot(1,2,1); imshow(rotatedIm,
rotatedIm = imtransform(im, tformRotation,'FillValues',0);
subplot(1,2,2); imshow(rotatedIm,[]);
```

Lin ZHANG, SSE, 2015
Applying Geometric Transformations to Images

- Matlab implementation

An example

original image

rotated images
Applying Geometric Transformations to Images

- Matlab implementation

Another example

original image

affine transformed images

Lin ZHANG, SSE, 2015
Applying Geometric Transformations to Images

• Output image with location specified
 • This is useful when we want to display the original image and the transformed image on the same figure

In Matlab, this is accomplished by

```matlab
imshow(image, ‘XData’, xVector, ‘YData’, yVector)
```

‘XData’ and ‘YData’ can be obtained by `imtransform`
Applying Geometric Transformations to Images

- Output image with location specified

An example

```matlab
im = imread('tongji.bmp');
theta = pi/4;
affineMatrix = [cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; -300 0 1];
tformAffine = maketform('affine', affineMatrix);
[affineIm, XData, YData] = imtransform(im, tformAffine, 'FillValues', 255);
figure; imshow(im, []);
hold on
imshow(affineIm, [], 'XData', XData, 'YData', YData);
axis auto
axis on
```
Applying Geometric Transformations to Images

- Output image with location specified

An example

Display the original image and the transformed image in the same coordinate system
Contents

- Transforming points
- Hierarchy of geometric transformations
- Applying geometric transformations to images
- Image Registration
 - Background
 - A manual method
Background

- One of the most important applications of geometric transformations is image registration.
- Image registration seeks to align images taken in different times, or taken from different modalities.
- Image registration has applications especially in:
 - Medicine
 - Remote sensing
 - Entertainment
Background—Example, CT and MRI Registration

Top row: unregistered MR (left) and CT (right) images
Bottom row: MR images in sagittal, coronal and axial planes with the outline of bone, thresholded from the registered CT scan, overlaid
Background—Example, Panorama Stitching

Two images, sharing some objects

image 1

image 2
Transform image 1 into the same coordinate system of image 2
Finally, stitch the transformed image 1 with image 2 to get the panorama.
Background

• The basic registration process
 • Detect features
 • Match corresponding features
 • Infer geometric transformation
 • Use the geometric transformation to align one image with the other

• Image registration can be manual or automatic depending on whether feature detection and matching is human-assisted or performed using an automatic algorithm
Contents

- Transforming points
- Hierarchy of geometric transformations
- Applying geometric transformations to images
- Image Registration
 - Background
 - A manual method
 - Other methods
A Manual Method

We illustrate this method by using an example, which registers the following two images:

Base image

input image which needs to be registered to the base image
A Manual Method

• Step 1: Manual feature selection and matching using “cpselect” (control points selection)
 • “cpselect” is a GUI tool for manually selecting and matching corresponding control points in a pair of images to be registered
A Manual Method

• Step 1: Manual feature selection and matching using “cpselect” (control points selection)
A Manual Method

• Step 2: Inferring transformation parameters using “cp2tform”
 • “cp2tform” can infer geometric transformation parameters from set of feature pairs

\[
tform = \text{cp2tform}(\text{input_points}, \text{base_points}, \text{transformtype})
\]

The arguments input_points and base_points are both \(P \times 2 \) matrices containing corresponding feature locations
A Manual Method

- Step 3: Use the geometric transformation to align one image with the other
 - In Matlab, this is achieved by “imtransform”

Two images are registered
Contents

• Transforming points
• Hierarchy of geometric transformations
• Applying geometric transformations to images
• Image Registration
 • Background
 • A manual method
• Other methods
Area-based Registration

- Area-based registration
 - A “template image” is shifted to cover each location in the base image
 - At each location, an area-based similarity is computed
 - The template is said to be a match at a particular position in the base image if a distinct peak in the similarity metric is found at that position
Area-based Registration

- Area-based registration

A commonly used area-based similarity metric is the correlation coefficient

$$\gamma(x, y) = \frac{\sum_{s,t} [w(s,t) - \bar{w}] [f(x + s, y + t) - \bar{f}_{xy}]}{\sqrt{\sum_{s,t} [w(s,t) - \bar{w}]^2} \sqrt{\sum_{s,t} [f(x + s, y + t) - \bar{f}_{xy}]^2}}$$

where w is the template image, \bar{w} is the average value of the template, f is the base image, and \bar{f}_{xy} is the average value of the based image in the region where f and w overlap.

In Matlab, such a 2D correlation coefficient can be realized by “normxcorr2”
• Limitations of area-based registration
 • Classical area-based registration method can only deal with translation transformation between two images;
 • It will fail if rotation, scaling, or affine transformations exist between the two images
Automatic Feature-based Registration

• Feature points (sometimes referred as key points or interest points) can be detected automatically
 • Harris corner detector
 • Extrema of LoG

• Feature points descriptors can be performed automatically
 • SIFT (scale invariant feature transform)

• Feature matching can be performed automatically

To know more, come to our another course “Computer Vision”!

Lin ZHANG, SSE, 2015
Thanks for your attention