Lecture 6
Introduction to Numerical Geometry

Lin ZHANG, PhD
School of Software Engineering
Tongji University
Spring 2019
Outline

• Introduction
• Basic concepts in geometry
• Discrete geometry
 • Metric for discrete geometry
 • Sampling
• Rigid shape analysis
 • Euclidean isometries removal
 • ICP-based shape matching
Introduction

Landscape

```
Image processing

2D world

Computer vision

3D world

Geometry processing

"HORSE"

Pattern recognition
```

Lin ZHANG, SSE, 2019
Shapes VS Images

Geometry
- Euclidean (flat)
- Non-Euclidean (curved)

Parametrization
- Global

Sampling
- Uniform Cartesian

"Uniform" is not well-defined
Shapes VS Images

Representation

Array of pixels

Cloud of points, mesh, etc, etc.

Deformations

Rotation, affine, projective, etc.

Wealth of non-rigid deformations

Lin ZHANG, SSE, 2019
Non-rigid world from macro to nano

- Nano-machines
- Proteins
- Micro-organisms
- Organs
- Animals
Invariant similarity

$X \xrightarrow{\tau} \tau X \xleftarrow{d(\tau X, \sigma Y)} \sigma Y \xrightarrow{d(\tau X, \sigma Y)} Y$

$d(X, Y) = d(\tau X, \sigma Y)$
Topics

- Metric spaces
- Canonical forms
- Local features
- Geometric words & expressions

Shape Representation

Lin ZHANG, SSE, 2019
Tools

- Metric geometry
- Fast marching
- Iterative closest point algorithms
- Multidimensional scaling
- Convex optimization
A. M. Bronstein et al., Numerical geometry of non-rigid shapes, Springer 2008
Outline

• Introduction
• Basic concepts in geometry
• Discrete geometry
 • Metric for discrete geometry
 • Sampling
• Rigid shape analysis
 • Euclidean isometries removal
 • ICP-based shape matching
Distances

- Euclidean
- Manhattan
- Geodesic
Metric

A function \(d : X \times X \to \mathbb{R} \) satisfying for all \(x_1, x_2, x_3 \in X \)

- **Non-negativity:** \(d(x_1, x_2) \geq 0 \)
- **Indiscernability:** \(d(x_1, x_2) = 0 \) if and only if \(x_1 = x_2 \)
- **Symmetry:** \(d(x_1, x_2) = d(x_2, x_1) \)
- **Triangle inequality:** \(d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3) \)

\((X, d)\) is called a **metric space**
Metric balls

- **Open ball:** $B_r(x_0) = \{ x \in X : d(x, x_0) < r \}$
- **Closed ball:** $\bar{B}_r(x_0) = \{ x \in X : d(x, x_0) \leq r \}$

Euclidean ball

\[
\| x - x_0 \|_2 = \sqrt{\sum_k |x^k - x_0^k|^2} \leq r
\]

L$_1$ ball

\[
\| x - x_0 \|_1 = \sum_k |x^k - x_0^k| \leq r
\]

L$_\infty$ ball

\[
\| x - x_0 \|_\infty = \max_k |x^k - x_0^k| \leq r
\]
Connectivity

The space X is connected if it cannot be divided into two disjoint nonempty open sets, and disconnected otherwise.

Connected

Disconnected

Stronger property: path connectedness
Examples of metrics

Euclidean

Path length
Homeomorphisms

A **bijective** (one-to-one and onto) continuous function with a continuous inverse is called a **homeomorphism**

Homeomorphisms copy topology – homeomorphic spaces are **topologically equivalent**

Torus and cup are homeomorphic
Homeomorphisms

Topology of Latin alphabet

\[
\begin{align*}
\text{a} & \quad \text{b} & \quad \text{d} & \quad \text{e} \\
\text{o} & \quad \text{p} & \quad \text{q} \\
\text{c} & \quad \text{f} & \quad \text{h} & \quad \text{k} & \quad \text{n} & \quad \text{r} & \quad \text{s} \\
\text{i} & \quad \text{j} \\
\text{l} & \quad \text{m} & \quad \text{t} & \quad \text{u} \\
\text{v} & \quad \text{w} & \quad \text{x} & \quad \text{y} & \quad \text{z}
\end{align*}
\]

homeomorphic to

homeomorphic to

homeomorphic to

Lin ZHANG, SSE, 2019
Isometries

- Two metric spaces \((X, d)\) and \((Y, \delta)\) are equivalent if there exists a **distance-preserving** map (isometry) \(\varphi : (X, d) \rightarrow (Y, \delta)\) satisfying

\[
\delta \circ (\varphi \times \varphi) = d
\]

- Such \((X, d)\) and \((Y, \delta)\) are called **isometric**, denoted \((X, d) \sim (Y, \delta)\)
- Isometries copy **metric geometries** – isometric spaces are equivalent from the point of view of metric geometry
Isometries

Euclidean isometries
Isometries

Euclidean isometries

- Rotation
- Translation
- Reflection
Isometries

Geodesic isometries
Similarity as metric

Two deformations of a human are equivalent

\[d(X, \tau X) = 0 \]

Human and monkey are \(\varepsilon \)-similar

\[d(X, Y) = \varepsilon \]

Human is twice more similar to monkey than to dog

\[d(Y, Z) = 2\varepsilon \]

Shape space

Lin ZHANG, SSE, 2019
Outline

• Introduction
• Basic concepts in geometry
• Discrete geometry
 • Metric for discrete geometry
 • Sampling
• Rigid shape analysis
 • Euclidean isometries removal
 • ICP-based shape matching
Metric for discrete geometry

Discretization

Continuous world

- Surface X
- Metric d_X
- Topology

Discrete world

- Sampling
 $X' = \{x_1, ..., x_N\} \subset X$
- Discrete metric (matrix of distances)
 $D_X = (d_X(x_i, x_j))$
- Discrete topology (connectivity)
How to compute the intrinsic metric?

- So far, we represented X itself.
- Our model of non-rigid shapes as metric spaces (X, d_X) involves the intrinsic metric

$$d_X(x, x') = \min_{\Gamma(x, x')} \int_{\Gamma} d\ell$$

- Sampling procedure requires d_X as well.
- We need a tool to compute geodesic distances on X.
Metric for discrete geometry

Shortest path problem
Shapes as graphs

- **Sample** the shape at N vertices $X = \{x_1, \ldots, x_N\}$.
- Represent shape as an **undirected graph** $G = (X, E)$.
- $E \subseteq X \times X$ set of **edges** representing **adjacent** vertices.
- Define **length function** $L : E \rightarrow \mathbb{R}$ measuring **local distances** as **Euclidean** ones,
 $$L(x_i, x_j) = \|x_i - x_j\|_2$$
Shapes as graphs

- **Path** between $x_i, x_j \in X$ is an **ordered set of connected edges**

$$
\Gamma(x_i, x_j) = \{e_1, e_2, ..., e_k\} \subset E \\
= \{(x_{i_1}, x_{i_2}), (x_{i_2}, x_{i_3}), ..., (x_{i_{k-1}}, x_{i_k}), (x_{i_k}, x_{i_{k+1}})\}
$$

where $x_{i_1} = x_i$ and $x_{i_{k+1}} = x_j$.

- **Path length** = sum of edge lengths

$$
L(\Gamma(x_i, x_j)) = \sum_{n=1}^{k} L(e_n) = \sum_{n=1}^{k} L(x_{i_n}, x_{i_{n+1}})
$$
Shortest path between $x_i, x_j \in X$

$$\Gamma^*(x_i, x_j) = \arg \min_{\Gamma(x_i, x_j)} L(\Gamma(x_i, x_j))$$

Length metric in graph

$$d_L(x_i, x_j) = \min_{\Gamma(x_i, x_j)} L(\Gamma(x_i, x_j))$$

Approximates the geodesic distance $d_X \approx d_L$ on the shape.

Shortest path problem: compute $\Gamma^*(x_i, x_j)$ and $d_L(x_i, x_j)$ between any $x_i, x_j \in X$.

Alternatively: given a source point $x_0 \in X$, compute the distance map $d(x_i) = d_L(x_0, x_i)$.
Bellman’s principle of optimality

- Let $\Gamma^*(x_i, x_j)$ be shortest path between $x_i, x_j \in X$ and $x_k \in \Gamma^*(x_i, x_j)$ a point on the path.
- Then, $\Gamma(x_i, x_k)$ and $\Gamma(x_k, x_j)$ are shortest sub-paths between x_i, x_k, and x_k, x_j.

- Suppose there exists a shorter path $\Gamma'(x_i, x_k)$.

\[
L(\Gamma'(x_i, x_j)) = L(\Gamma'(x_i, x_k)) + L(\Gamma(x_k, x_j)) < L(\Gamma(x_i, x_k)) + L(\Gamma(x_k, x_j)) = L(\Gamma^*(x_i, x_j))
\]
- Contradiction to $\Gamma^*(x_i, x_j)$ being shortest path.
Metric for discrete geometry

Edsger Wybe Dijkstra (1930–2002)
Dijkstra’s algorithm

- Initialize $d(x_0) = 0$ and $d(x_i) = \infty$ for the rest of the graph;
- Initialize queue of unprocessed vertices $Q = X$.

While $Q \neq \emptyset$

- Find vertex x with smallest value of d
 $$x = \arg \min_{x \in Q} d(x)$$
- For each unprocessed adjacent vertex $x' \in \mathcal{N}(x) \cap Q$
 $$d(x') = \min\{d(x'), d(x) + L(x, x')\}$$
- Remove x from Q.
- Return distance map $d(x_i) = d_L(x_0, x_i)$.

Metric for discrete geometry
Troubles with the metric

- Grid with **4-neighbor** connectivity.
- True **Euclidean distance**
 \[d_{\mathbb{R}^2} = \sqrt{2} \]
- Shortest path in **graph** (not unique)
 \[d_L = 2 \]
- Increasing **sampling density** does not help.
Metric for discrete geometry

Metrification error

4-neighbor topology
Manhattan distance

8-neighbor topology

Continuous \mathbb{R}^2
Euclidean distance

\[d_{L_1} = \sum_i |x_1^i - x_2^i| \]
\[d_{L_2} = \sqrt{\sum_i (x_1^i - x_2^i)^2} \]

- **Graph representation** induces an **inconsistent metric**.
- Increasing **sampling size** does not make it consistent.
- Neither does increasing **connectivity**.
Metric for discrete geometry

- Stick to graph representation
- Change connectivity
- Consistency guaranteed under certain conditions

Discrete solution

Continuous solution

- Stick to given sampling
- Compute distance map on the surface
- New algorithm!
Metric for discrete geometry

To solve the above issue, we can use fast marching methods

- A continuous variant of Dijkstra’s algorithm
- Consistently approximate the intrinsic metric on the surface
Metric for discrete geometry

Usages of fast marching

- Geodesic distances
- Minimal geodesics
- Voronoi tessellation & sampling
- Offset curves
Outline

• Introduction
• Basic concepts in geometry
• Discrete geometry
 • Metric for discrete geometry
 • Sampling
• Rigid shape analysis
 • Euclidean isometries removal
 • ICP-based shape matching
How good is a sampling?
Sampling density

- How to quantify **density** of sampling?

- \(X' \) is an **\(r \)-covering** of \(X \) if

\[
\bigcup_{x_i \in X'} B_r(x_i) = X
\]

Alternatively:

\[
d_X(x, X') \leq r
\]

for all \(x \in X \), where

\[
d_X(x, X') = \inf_{x_i \in X'} d_X(x, x_i)
\]

is the **point-to-set distance**.
Sampling efficiency

- Are all points necessary?
- An r-covering may be unnecessarily dense (may even not be a discrete set).
- Quantify how well the samples are separated.
- X' is r'-separated if
 $$d_{X'}(x_i, x_j) \geq r'$$
 for all $x_i, x_j \in X'$.
- For $r' > 0$, an r'-separated set is finite if X is compact.

Also an r-covering!
Good sampling has to be **dense** and **efficient** at the same time.

Find a r-**separated** and r-**covering** X' of X.

Achieved using **farthest point sampling**.
Farthest point sampling

Farthest point
Farthest point sampling

- Start with some $X' = \{x_1 \in X\}$.
- Determine **sampling radius**
 $$r = \max_{x \in X} d_X(x, X')$$
- If $r \leq r_{\text{target}}$ **stop**.
- Find the **farthest point** from X
 $$x' = \arg \max_{x \in X} d_X(x, X')$$
- Add x' to X'
Farthest point sampling

- Outcome: r-separated r-covering of X.
- Produces sampling with **progressively increasing** density.
- A **greedy algorithm**: previously added points remain in X'.
- There might be another r-separated r-covering containing less points.
- In practice used to **sub-sample** a densely sampled shape.
- Straightforward time complexity: $O(MN)$

 M number of points in dense sampling, N number of points in X'.
- Using **efficient data structures** can be reduced to $O(N \log M)$.
Sampling as representation

- Sampling **represents** a region on X as a single point $x_i \in X'$.
- Region of points on X **closer** to x_i than to any other x_j

$$V_i(X') = \{x \in X : d_X(x, x_i) < d_X(x, x_j), x_j \neq i \in X'\}$$

- **Voronoi region** (Dirichlet or Voronoi-Dirichlet region, Thiessen polytope or polygon, Wigner-Seitz zone, domain of action).
Voronoi decomposition

A point \(x \in X \) can belong to one of the following:

- **Voronoi region** \(V_i \) (\(x \) is closer to \(x_i \) than to any other \(x_j \)).
- **Voronoi edge** \(V_{ij} = \overline{V}_i \cap \overline{V}_j \) (\(x \) is equidistant from \(x_i \) and \(x_j \)).
- **Voronoi vertex** \(V_{ijk} = \overline{V}_i \cap \overline{V}_j \cap \overline{V}_k \) (\(x \) is equidistant from three points \(x_i, x_j, x_k \)).
Voronoi decomposition
Voronoi decomposition

- Voronoi regions are **disjoint**.
- Their closure

\[\bigcup_i \overline{V_i} = X \]

covers the entire \(X \).
- Cutting \(X \) along Voronoi edges produces a collection of **tiles** \(\{V_i\} \).
- The tiles are **topological disks** (are homeomorphic to a disk).
Voronoi tessellations in Nature
Delaunay tessellation

Define connectivity as follows: a pair of points whose Voronoi cells are adjacent are connected.

The obtained connectivity graph is **dual** to the Voronoi diagram and is called **Delaunay tessellation**.
Delaunay tessellation

- For a set P of points in the (d-dimensional) Euclidean space, a Delaunay triangulation is a triangulation DT(P) such that no point in P is inside the circumhypersphere of any simplex in DT(P).
- It is known that there exists a unique Delaunay triangulation for P if P is a set of points in general position.
- In the plane, the Delaunay triangulation maximizes the minimum angle.
Delaunay tessellation

This triangulation does not meet the Delaunay condition (the circumcircles contain more than three points)

Flipping the common edge produces a Delaunay triangulation for the four points
Shape representation

Cloud of points

Triangular mesh

Graph
A structure of the form \((I, E, T)\) consisting of

- **Vertices** \(I = \{1, ..., N\}\)
- **Edges** \(E = \{(i, j) \in I \times I : x_j \in \mathcal{N}(x_i)\}\)
- **Faces** \(T = \{(i, j, k) \in I \times I \times I : (i, j), (i, k), (k, j) \in E\}\)

is called a triangular mesh

The mesh is a purely **topological** object and does not contain any geometric properties

The faces can be represented as an \(N_F \times 3\) matrix of indices, where each row is a vector of the form \(t_k = (t_k^1, t_k^2, t_k^3)\), \(t_k^i \in I\) and \(k = 1, ..., N_F\)
Example of triangular mesh

<table>
<thead>
<tr>
<th>Vertices</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edges</td>
<td>(1, 2)</td>
<td>(1, 3)</td>
<td>(1, 4)</td>
<td>(4, 2)</td>
</tr>
<tr>
<td>Faces</td>
<td>(2, 4, 3)</td>
<td>(1, 4, 2)</td>
<td>(3, 4, 1)</td>
<td>(2, 3, 1)</td>
</tr>
</tbody>
</table>

| Coordinates | (0.5, 0.86, 0) | (0, 0, 0) | (1, 0, 0) | (0.5, 0.28, 0.86) |

Lin ZHANG, SSE, 2019
Outline

• Introduction
• Basic concepts in geometry
• Discrete geometry
 • Metric for discrete geometry
 • Sampling
• Rigid shape analysis
 • Euclidean isometries removal
 • ICP-based shape matching
A fairy tale shape similarity problem
Extrinsic shape similarity
Extrinsic shape similarity

- Given two shapes X and Y, find the degree of their incongruence.
- Compare X and Y as subsets of the Euclidean space \mathbb{R}^3.
- Invariance to rigid motion: rotation, translation, (reflection):

$$x' = Rx + t$$

- R is a rotation matrix, $R^T R = I$
- t is a translation vector
How to get rid of Euclidean isometries?

- How to remove translation and rotation ambiguity?
- Find some “canonical” placement of the shape X in \mathbb{R}^3.
- **Extrinsic centroid** (center of mass, or center of gravity):

 $$x_0 = \frac{\int_X x \, dx}{\int_X dx}$$

- Set $t = -x_0$ to resolve translation ambiguity.
- Three degrees of freedom remaining…
How to get rid of Euclidean isometries?

- Find the direction d_1 in which the surface has **maximum extent**.
- Maximize **variance** of projection of X onto d_1

\[
\begin{align*}
 d_1 &= \arg \max_{d_1 : \|d_1\|_2 = 1} \int_X (d^T x)^2 dx \\
 &= \arg \max_{d_1 : \|d_1\|_2 = 1} d_1^T \left(\int_X x x^T dx \right) d_1 \\
 &= \arg \max_{d_1 : \|d_1\|_2 = 1} d_1^T \Sigma_X d_1
\end{align*}
\]

- Σ_X is the **covariance matrix**
- d_1 is the first **principal direction**
How to get rid of Euclidean isometries?

- Project X on the plane orthogonal to d_1.
- Repeat the process to find second and third principal directions d_2, d_3.
How to get rid of Euclidean isometries?

Canonical basis

\[d_1 \perp d_2 \perp d_3 \] span a canonical orthogonal basis for \(X \) in \(\mathbb{R}^3 \).
How to get rid of Euclidean isometries?

- Direction maximizing $d_1^T \Sigma_X d_1 = \text{largest eigenvector of } \Sigma_X$.
- d_2 and d_3 correspond to the second and third eigenvectors of Σ_X.
- Σ_X admits unitary diagonalization $\Sigma_X = U^T \Lambda U$.

$$U = \begin{pmatrix} d_1^T \\ d_2^T \\ d_3^T \end{pmatrix}$$

- Principal component analysis (PCA), or Karhunen-Loéve transform (KLT), or Hotelling transform.
Second-order geometric moments

- **Eigenvalues** of \sum_X are second-order moments σ_{ii} of X.
- **Second-order geometric moments** of X: $\sigma_{ij} = \int_X x^i x^j \, dx$
- In the canonical basis, **mixed moments** σ_{ij} vanish.
- **Ratio** $\sigma_{11} : \sigma_{22} : \sigma_{33}$ describe **eccentricity** of X.
- **Magnitudes** of σ_{ii} express shape **scale**.

![Diagrams showing the ratio of second-order moments and their impact on shape scale.]
How to get rid of Euclidean isometries?

Examples

Without self-alignment

With self-alignment by using PCA

Lin ZHANG, SSE, 2019
Outline

• Introduction
• Basic concepts in geometry
• Discrete geometry
 • Metric for discrete geometry
 • Sampling
• Rigid shape analysis
 • Euclidean isometries removal
 • ICP-based shape matching
Iterative closest point (ICP) algorithms

Given two point sets \(\{m_i\}_{i=1}^{N} \) and \(\{n_j\}_{j=1}^{M} \), find the best motion \((s, R, t)\) bringing \(\left\{ sR(n_j) + t \right\} \) as close as possible to \(\{m_i\}_{i=1}^{N} \):

\[
d_{ICP}(\{m_i\}, \{n_j\}) = \min_{s,R,t} d(\{sR(n_j) + t\}, \{m_i\})
\]

\(d(\{sR(n_j) + t\}, \{m_i\}) \) is some shape-to-shape distance.

Minimum = extrinsic dissimilarity of \(\{m_i\}_{i=1}^{N} \) and \(\{n_j\}_{j=1}^{M} \).

Minimizer = best alignment between \(\{m_i\}_{i=1}^{N} \) and \(\{n_j\}_{j=1}^{M} \).

ICP is a family of algorithms differing in

- The choice of the shape-to-shape distance.
- The choice of the numerical minimization algorithm.
Iterative closest point (ICP) algorithms

\[[s, R, T] = \text{ICP} (\{m_i\}_{i=1}^{N}, \{n_j\}_{j=1}^{M}) \text{ (suppose } N < M) \]

calculate the point correspondences \(\{m_i, n_i\}_{i=1}^{N} \) (closest point)

calculate the error: \(\Sigma^2 = \sum_{i=1}^{N} (m_i - n_i)^2 \)

While not convergent

Evaluate \(s, R \) and \(T \) according to the pairs \(\{m_i, n_i\}_{i=1}^{N} \)

Apply \(s, R \) and \(T \) to \(\{n_j\} \) to get \(\{n'_j\} \)

Let \(\{n_j\} = \{n'_j\} \)

Re-calculate the point correspondences \(\{m_i, n_i\}_{i=1}^{N} \)

re-calculate the error: \(\Sigma^2 = \sum_{i=1}^{N} (m_i - n_i)^2 \)

End

Return \(s, R, T \)
Iterative closest point (ICP) algorithms

\[[s, R, T] = \text{ICP}\left(\{m_i\}_{i=1}^N, \{n_j\}_{j=1}^M\right) \text{ (suppose } N < M) \]

calculate the point correspondences \(\{m_i, n_i\}_{i=1}^N \) (closest point)

calculate the error: \(\Sigma^2 = \sum_{i=1}^{N} (m_i - n_i)^2 \)

While not convergent

Evaluate \(s, R \) and \(T \) according to the pairs \(\{m_i, n_i\}_{i=1}^N \)

Apply \(s, R \) and \(T \) to \(\{n_j\} \) to get \(\{n'_j\} \)

Let \(\{n_j\} = \{n'_j\} \)

Re-calculate the point correspondences \(\{m_i, n_i\}_{i=1}^N \)

re-calculate the error: \(\Sigma^2 = \sum_{i=1}^{N} (m_i - n_i)^2 \)

End

Return \(s, R, T \)
Iterative closest point (ICP) algorithms

\[[s,R,T] = \text{ICP} \left(\{ m_i \}_{i=1}^N, \{ n_j \}_{j=1}^M \right) \text{(suppose } N < M) \]

calculate the point correspondences \(\{ m_i, n_i \}_{i=1}^N \) (closest point)

calculate the error: \(\Sigma^2 = \sum_{i=1}^{N} (m_i - n_i)^2 \)

While not convergent

Evaluate \(s, R \) and \(T \) according to the pairs \(\{ m_i, n_i \}_{i=1}^N \)

Apply \(s, R \) and \(T \) to \(\{ n_j \} \) to get \(\{ n'_j \} \)

Let \(\{ n_j \} = \{ n'_j \} \)

Re-calculate the point correspondences \(\{ m_i, n_i \}_{i=1}^N \)

re-calculate the error: \(\Sigma^2 = \sum_{i=1}^{N} (m_i - n_i)^2 \)

End

Return \(s, R, T \)
Iterative closest point (ICP) algorithms

Problem definition:

Given a set of point correspondence pairs \(\{m_i, n_i\}_{i=1}^N \), how to evaluate \(s, R \) and \(T \) to minimize

\[
\Sigma^2 = \sum_{i=1}^{N} \left\| m_i - (sR(n_i) + T) \right\|^2
\]
Iterative closest point (ICP) algorithms

We assume that there is a similarity transform between point sets \(\{ m_i \}_{i=1}^N \) and \(\{ n_i \}_{i=1}^N \)

Find \(s, R \) and \(T \) to minimize

\[
\Sigma^2 = \sum_{i=1}^N e_i^2 = \sum_{i=1}^N \left\| m_i - (sR(n_i) + T) \right\|^2
\]

Let

\[
\bar{m} = \frac{1}{N} \sum_{i=1}^N m_i, \quad \bar{n} = \frac{1}{N} \sum_{i=1}^N n_i, \quad m_i' = m_i - \bar{m}, \quad n_i' = n_i - \bar{n}
\]

Note that:

\[
\sum_{i=1}^N m_i' = 0, \quad \sum_{i=1}^N n_i' = 0
\]

Note: \(R \) is an orthogonal matrix.
Iterative closest point (ICP) algorithms

Then:
\[e_i = m_i - sR(n_i) - T = m_i' + \bar{m} - sR(n_i' + \bar{n}) - T = m_i' + \bar{m} - sR(n_i') - sR(\bar{n}) - T \]
\[= m_i' - sR(n_i') - \left(T - \bar{m} + sR(\bar{n}) \right) = m_i' - sR(n_i') - e_0 \]
\[e_0 = T - \bar{m} + sR(\bar{n}) \text{ is independent from } \{m_i', n_i'\} \]

(1) can be rewritten as:
\[\Sigma^2 = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} \left\| m_i' - sR(n_i') - e_0 \right\|^2 = \sum_{i=1}^{N} \left\| m_i' - sR(n_i') \right\|^2 - 2e_0 \cdot \sum_{i=1}^{N} \left(m_i' - sR(n_i') \right) + Ne_0^2 \]
\[= \sum_{i=1}^{N} \left\| m_i' - sR(n_i') \right\|^2 - 2e_0 \cdot \sum_{i=1}^{N} \left(m_i' \right) + 2e_0 \cdot \sum_{i=1}^{N} \left(sR(n_i') \right) + Ne_0^2 \]
\[= \sum_{i=1}^{N} \left\| m_i' - sR(n_i') \right\|^2 + Ne_0^2 \]

Variables are separated and can be minimized separately.

\[e_0^2 = 0 \iff T = \bar{m} - sR(\bar{n}) \]

If we have \(s\) and \(R\), \(T\) can be determined.
Iterative closest point (ICP) algorithms

Then the problem simplifies to: how to minimize

$$\Sigma^2 = \sum_{i=1}^{N} \left\| m_i' - sR(n_i') \right\|^2$$

Consider its geometric meaning here.

We revise the error item as a symmetrical one:

$$\Sigma^2 = \sum_{i=1}^{N} \left\| \frac{1}{\sqrt{s}} m_i' - \sqrt{s}R(n_i') \right\|^2 = \frac{1}{s} \sum_{i=1}^{N} \left\| m_i' \right\|^2 - 2 \sum_{i=1}^{N} m_i' \cdot R(n_i') + s \sum_{i=1}^{N} \left\| R(n_i') \right\|^2$$

$$= \frac{1}{s} \sum_{i=1}^{N} \left\| m_i' \right\|^2 - 2 \sum_{i=1}^{N} m_i' \cdot R(n_i') + s \sum_{i=1}^{N} \left\| n_i' \right\|^2$$

Variables are separated.

Thus,

$$\Sigma^2 = \frac{1}{s} P - 2D + sQ = \left(\sqrt{s} \cdot \sqrt{Q} - \frac{1}{\sqrt{s}} \cdot \sqrt{P} \right)^2 + 2(\sqrt{PQ} - D)$$
Iterative closest point (ICP) algorithms

\[
\left(\sqrt{s} \sqrt{Q} - \frac{1}{\sqrt{s}} \sqrt{P}\right)^2 = 0 \iff s = \sqrt{\frac{P}{Q}} = \sqrt[4]{\frac{\sum_{i=1}^{N} ||m'_i||^2}{\sum_{i=1}^{N} ||n'_i||^2}}
\]

Then the problem simplifies to: how to maximize

\[
D = \sum_{i=1}^{N} m'_i \cdot R(n'_i)
\]

Note that: D is a real number.

\[
D = \sum_{i=1}^{N} m'_i \cdot Rn'_i = \sum_{i=1}^{N} \left(m'_i\right)^T Rn'_i = \text{trace}\left(\sum_{i=1}^{N} Rn'_i \left(m'_i\right)^T\right) = \text{trace}\left(RH\right)
\]

\[
H \equiv \sum_{i=1}^{N} n'_i \left(m'_i\right)^T
\]

Now we are looking for an orthogonal matrix R to maximize the trace of RH.

Lin ZHANG, SSE, 2019
Lemma
For any positive semi-definite matrix C and any orthogonal matrix B:

$$\text{trace}(C) \geq \text{trace}(BC)$$

Proof:
From the positive definite property of C, $\exists A, C = AA^T$ where A is a non-singular matrix.
Let a_i be the ith column of A. Then

$$\text{trace}(BAA^T) = \text{trace}(A^T BA) = \sum_i a_i^T (Ba_i)$$

According to Schwarz inequality: $|<x, y>| \leq \|x\|\|y\|$,

$$a_i^T (Ba_i) \leq \|a_i^T\|\|Ba_i\| = \sqrt{(a_i^T a_i)(a_i^T B^T Ba_i)} = a_i^T a_i$$

Hence,

$$\text{trace}(BAA^T) \leq \sum_i a_i^T a_i = \text{trace}(AA^T)$$

that is, $\text{trace}(BC) \leq \text{trace}(C)$
Iterative closest point (ICP) algorithms

Consider the SVD of

\[H = \sum_{i=1}^{N} n'_i (m'_i)^T \]

According to the property of SVD, \(U \) and \(V \) are orthogonal matrices, and \(\Lambda \) is a diagonal matrix with nonnegative elements.

Now let \(X = VU^T \)

Note that: \(X \) is orthogonal.

We have \(XH = VU^T U \Lambda V^T = V \Lambda V^T \) which is positive semi-definite.

Thus, from the lemma, we know: for any orthogonal matrix \(B \)

\[\text{trace}(XH) \geq \text{trace}(BXH) \]

for any orthogonal matrix \(\Psi \)

\[\text{trace}(XH) \geq \text{trace}(\Psi H) \]

It’s time to go back to our objective now...

R should be \(X \)
Now, s, R and T are all determined.

\[H \equiv \sum_{i=1}^{N} n_i \left(m_i \right)^T = U \Lambda V^T \]

\[R = VU^T \quad s = \sqrt{\frac{\sum_{i=1}^{N} \left\| m_i \right\|^2}{\sum_{i=1}^{N} \left\| n_i \right\|^2}} \quad T = \bar{m} - sR(\bar{n}) \]
ICP Matching—An Example

bottle1 ~ bottle2: 0.8131
ac1 ~ ac2: 0.8939

bottle1 ~ ac1: 9.8462
bottle1 ~ ac2: 10.3231
bottle2 ~ ac1: 7.9172
bottle2 ~ ac2: 10.3362