Lecture 2
Local Interest Point Detectors

Lin ZHANG, PhD
School of Software Engineering
Tongji University
Spring 2021
Content

• Local Invariant Features
 • Motivation
 • Requirements
 • Invariance
• Harris Corner Detector
• Scale Invariant Point Detection
 • Automatic scale selection
 • Laplacian-of-Gaussian detector
 • Difference-of-Gaussian detector
Motivation

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions
 - Articulation
 - Intra-category variations
Motivation

Application: Image Matching

by Diva Sian

by swashford
Motivation

Application: Image Matching

Harder Case

by Diva Sian

by scgbt

Lin ZHANG, SSE, 2021
Motivation

Application: Image Matching

NASA Mars Rover Images
Motivation

Application: Image Matching (Look for tiny colored squares)

NASA Mars Rover images with SIFT matches
Motivation

• Panorama stitching
 • We have two images – how do we combine them?
Motivation

- Panorama stitching
 - We have two images – how do we combine them?

- Procedure:
 - Detect feature points in both images
Motivation

- Panorama stitching
 - We have two images – how do we combine them?

- Procedure:
 - Detect feature points in both images
 - Find corresponding pairs
Motivation

• Panorama stitching
 • We have two images – how do we combine them?

• Procedure:
 – Detect feature points in both images
 – Find corresponding pairs
 – Use these pairs to align the images
General Approach for Image Matching

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors

Source: B. Leibe
Characteristics of Good Features

• Repeatability
 • The same feature can be found in several images despite geometric and photometric transformations

• Saliency
 • Each feature has a distinctive description

• Compactness and efficiency
 • Many fewer features than image pixels

• Locality
 • A feature occupies a relatively small area of the image; robust to clutter and occlusion
Invariance: Geometric Transformations
Level of Geometric Invariance
Invariance: Photometric Transformations

- Often modeled as a linear transformation:
 - Scaling + Offset
Applications

Feature points are used for:

- Motion tracking
- Image alignment
- 3D reconstruction
- Object recognition
- Indexing and database retrieval
- Robot navigation
Content

• Local Invariant Features
 • Motivation
 • Requirements
 • Invariance

• Harris Corner Detector

• Scale Invariant Point Detection
 • Automatic scale selection
 • Laplacian-of-Gaussian detector
 • Difference-of-Gaussian detector
Finding Corners

My office,
5:30PM, Sep. 18, 2011

Lin ZHANG, SSE, 2021
Finding Corners

- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window.
- Shifting a window in any direction should give a large change in intensity.

- “flat” region: no change in all directions
- “edge”: no change along the edge direction
- “corner”: significant change in all directions
Harris Detector: Basic Idea

Demo of a point + with well distinguished neighborhood.
Moving the window in any direction will result in a large intensity change.
Harris Detector: Basic Idea

Demo of a point + with well distinguished neighborhood. Moving the window in any direction will result in a large intensity change.

Difference = 2
Harris Detector: Basic Idea

Demo of a point + with well distinguished neighborhood.
Moving the window in any direction will result in a large intensity change.

Difference = 5
Harris Detector: Basic Idea

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large intensity change.
Harris Detector: Basic Idea

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large intensity change.
Harris Detector: Basic Idea

Demo of a point + with well distinguished neighborhood. Moving the window in any direction will result in a large intensity change.

Difference = 2
Harris Detector: Basic Idea

Demo of a point + with well distinguished neighborhood.
Moving the window in any direction will result in a large intensity change.
Harris Detector: Basic Idea

Demo of a point \(+ \) with well distinguished neighborhood.

Moving the window in any direction will result in a large intensity change.
Harris Corner Detection: Mathematics

Change in appearance of a local patch (defined by a window w) centered at p for the shift $(\Delta x, \Delta y)$:

$$S_w(\Delta x, \Delta y) = \sum_{(x_i, y_i) \in w} \left(f(x_i, y_i) - f(x_i + \Delta x, y_i + \Delta y) \right)^2$$

- Window function
- Intensity
- Shifted intensity

Window function $W =$
- 1 in window, 0 outside
- Gaussian
Harris Corner Detection: Mathematics

\[S_w(\Delta x, \Delta y) = \sum_{(x_i, y_i) \in w} (f(x_i, y_i) - f(x_i + \Delta x, y_i + \Delta y))^2 \]

\[\approx \sum_{(x_i, y_i) \in w} \left(f(x_i, y_i) - f(x_i, y_i) - \left[\frac{\partial f(x_i, y_i)}{\partial x}, \frac{\partial f(x_i, y_i)}{\partial y} \right] \right) \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right]^2 \]

\[= \sum_{(x_i, y_i) \in w} \left(\left[\frac{\partial f(x_i, y_i)}{\partial x}, \frac{\partial f(x_i, y_i)}{\partial y} \right] \right) \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right]^2 \]

\[= \left[\Delta x, \Delta y \right] \sum_{(x_i, y_i) \in w} \left[\frac{\partial f(x_i, y_i)}{\partial x}, \frac{\partial f(x_i, y_i)}{\partial y} \right] \left[\begin{array}{cc} \frac{\partial f(x_i, y_i)}{\partial x} & \frac{\partial f(x_i, y_i)}{\partial y} \\ \frac{\partial f(x_i, y_i)}{\partial x} & \frac{\partial f(x_i, y_i)}{\partial y} \end{array} \right] \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right] \]

\[= \left[\Delta x \Delta y \right] M \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right] \]
Harris Corner Detection

\[M = \begin{bmatrix}
\sum_{(x_i, y_i) \in W} \left(\frac{\partial f(x_i, y_i)}{\partial x} \right)^2 & \sum_{(x_i, y_i) \in W} \left(\frac{\partial f(x_i, y_i)}{\partial x} \cdot \frac{\partial f(x_i, y_i)}{\partial y} \right) \\
\sum_{(x_i, y_i) \in W} \left(\frac{\partial f(x_i, y_i)}{\partial x} \cdot \frac{\partial f(x_i, y_i)}{\partial y} \right) & \sum_{(x_i, y_i) \in W} \left(\frac{\partial f(x_i, y_i)}{\partial y} \right)^2
\end{bmatrix}\]

- It is real symmetric
Harris Corner Detection

\[S(\Delta x, \Delta y) \cong [\Delta x, \Delta y] M \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \]

\[M = \begin{bmatrix} \sum_{(x_i, y_i) \in w} (I_x)^2 & \sum_{(x_i, y_i) \in w} (I_x I_y) \\ \sum_{(x_i, y_i) \in w} (I_x I_y) & \sum_{(x_i, y_i) \in w} (I_y)^2 \end{bmatrix} \]

\[S(\Delta x, \Delta y) = 1 \] actually is the ellipse equation.

The shape of the ellipse is determined by \(M \).
Harris Corner Detection

The “cornerness” of the window w is reflected in M

Suppose there are two local windows w_1 and w_2; consider the cases when the moving of the two windows leads to the intensity change equals to 1. The moving vector $[\Delta x, \Delta y]$ of each window satisfies the ellipse equation. Thus,

For w_1,

$$[\Delta x, \Delta y] M_1 \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = 1$$

For w_2,

$$[\Delta x, \Delta y] M_2 \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = 1$$

Which window has higher cornerness?
The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R.

Direction of the fastest change:

direction of the slowest change

\[(\lambda_{\text{max}})^{-1/2} \]

\[(\lambda_{\text{min}})^{-1/2} \]
Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

- **Corner**
 - λ_1 and λ_2 are large,
 - $\lambda_1 \sim \lambda_2$;
 - S increases in all directions

- **Edge**
 - $\lambda_2 \gg \lambda_1$
 - $\lambda_1 >> \lambda_2$
 - λ_1 and λ_2 are small;
 - S is almost constant in all directions

Lin ZHANG, SSE, 2021
Corner response function

Measure of corner response:

\[R = \text{det} \mathbf{M} - k(\text{trace} \mathbf{M})^2 \]

\[\text{det} \mathbf{M} = \lambda_1 \lambda_2 \]

\[\text{trace} \mathbf{M} = \lambda_1 + \lambda_2 \]

\(k \) – empirical constant, \(k = 0.04-0.06 \)
Harris corner detector--illustration

Ellipse with equation: \[\Delta x, \Delta y \] \[M \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = 1 \]

- **flat region**: both eigenvalues small
- **edge**: one small, one large

Lin ZHANG, SSE, 2021
Ellipse with equation: $\left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right] M \left[\begin{array}{c} \Delta x \\ \Delta y \end{array} \right] = 1$

corner
both eigenvalues large
Harris corner detector-Algorithm

1. Image derivatives
2. Square of derivatives
3. Gaussian filter $g(\sigma_i)$

4. Cornerness function - two strong eigenvalues
$$R = \det[M(\sigma_i, \sigma_D)] - \alpha[\text{trace}(M(\sigma_i, \sigma_D))]^2$$
$$= g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2$$

5. Perform non-maximum suppression
Harris Detector: Steps
Harris Detector: Steps

Compute corner response R
Harris Detector: Steps

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Steps

Take only the points of local maxima of R
Models of Image Change

Photometric
- Affine intensity change \((I \rightarrow aI + b) \)

Geometric
- Rotation
- Scale
- Affine
Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector: Some Properties

Not invariant to *image scale*!

All points will be classified as *edges*

The underlying reason is that Harris corner detection scheme does not provide an automatic and appropriate window size selection method!
Local Descriptors for Harris Corners

- Descriptor for a Harris corner point
 - Take a region with a fixed size around it
 - Stack the region into a vector
 - This vector serves as the descriptor
 - When matching two descriptors in two different images, usually the correlation coefficient is used
Local Descriptors for Harris Corners

- Descriptor for a Harris corner point
 - Take a region with a fixed size around it
 - Stack the region into a vector
 - This vector serves as the descriptor
 - When matching two descriptors in two different images, usually the correlation coefficient is used

Correlation coefficient can be used to measure the similarity of two descriptors

$$\rho = \frac{E[v_1 - E(v_1)][v_2 - E(v_2)]}{\sqrt{D(v_1)}\sqrt{D(v_2)}}$$
Local Descriptors for Harris Corners

• Descriptor for a Harris corner point
 • Take a region with a fixed size around it
 • Stack the region into a vector
 • This vector serves as the descriptor
 • When matching two descriptors in two different images, usually the correlation coefficient is used

• Deficiencies of such simple descriptors
 • Not rotation invariant
 • Not scale invariant
Local Descriptors for Harris Corners

• Descriptor for a Harris corner point
 • Take a region with a fixed size around it
 • Stack the region into a vector
 • This vector serves as the descriptor
 • When matching two descriptors in two different images, usually the correlation coefficient is used

• We want:
 • Rotation and scale invariant feature points
 • Rotation and scale invariant feature descriptors
Content

- Local Invariant Features
 - Motivation
 - Requirements
 - Invariance
- Harris Corner Detector
- Scale Invariant Point Detection
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector
From Points to Regions

- The Harris corner detector defines interest points
 - Precise localization
 - High repeatability

- In order to match those points, we need to compute a descriptor over a region
 - How can we define such a region in a scale invariant manner?
 - That is how can we detect scale invariant regions?
Scale Invariant Region Selection

Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size

\[d(f_A, f_B) \]
Scale Invariant Region Selection

Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size
Scale Invariant Region Selection

Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size

\[d(f_A, f_B) \]

Slide credit: Krystian Mikołajczyk

Lin ZHANG, SSE, 2021
Scale Invariant Region Selection

Naïve Approach: Exhaustive Search

- Comparing descriptors while varying the patch size
 - Computationally inefficient
 - Inefficient but possible for matching
 - Prohibitive for retrieval in large databases
 - Prohibitive for recognition
What do we want to do next?

• Naïve approach for scale invariant local description is not efficient (Detect Harris corners first, and then exhaustively searching for regions with appropriate sizes)
• Now we want to:
 • Find scale invariant points in the image (location)
 • At the same time, we want to know their **characteristic scales** (used to determine the neighborhood for local description)
Achieving scale covariance

- Goal: independently detect corresponding regions in scaled versions of the same image
- Need *scale selection* mechanism for finding characteristic region size that is *covariant* with the image transformation
Automatic Scale Selection

Solution:
- Design a function on the region, which is “scale invariant”
 (the same for corresponding regions, even if they are at different scales)

- For a point in one image, we can consider it as a function of region size
 (patch width)
Automatic Scale Selection

- **Common approach**
 - Take a local extremum of this function
 - Observation: region size for which the extremum is achieved should be covariant to image scale; this scale covariant region size is found in each image independently
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

Slide credit: Krystian Mikolajczyk

Lin ZHANG, SSE, 2021
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Normalize: Rescale to fixed size
Automatic Scale Selection

- A good function for scale selection
 - It should have one stable sharp peak response to region size

\[f \] vs. \[\text{region size} \]

1. Good
2. Bad
3. Bad!
What is a useful signature function for scale?

- Laplacian-of-Gaussian = “blob” detector
Characteristics Scale

- We define the characteristic scale as the scale that produces peak of scale-normalized Laplacian-of-Gaussian response.

Another Fact

Spatial selection: the magnitude of the scale-normalized Laplacian-of-Gaussian response will achieve an extremum at the center of the blob, provided that its scale is “matched” to the scale of the blob
Scale-Invariant Point Detection

- Interest points:
 - Local extremum in scale space of scale-normalized Laplacian-of-Gaussian

\[\sigma^2 \left[G_{xx}(\sigma) + G_{yy}(\sigma) \right] \]
Scale-Invariant Point Detection

- **Interest points:**
 - Local extremum in scale space of scale-normalized Laplacian-of-Gaussian

\[
\sigma^2 \left[G_{xx}(\sigma) + G_{yy}(\sigma) \right]
\]
Scale-Invariant Point Detection

• Interest points:
 – Local extremum in scale space of scale-normalized Laplacian-of-Gaussian

\[\sigma^2 \left[G_{xx}(\sigma) + G_{yy}(\sigma) \right] \]
Scale-Invariant Point Detection

- **Interest points:**
 - Local extremum in scale space of scale-normalized Laplacian-of-Gaussian

\[\sigma^2 \left[G_{xx}(\sigma) + G_{yy}(\sigma) \right] \]

\(\Rightarrow \text{List of } (x, y, \sigma) \)

(Positions of extrema in the scale-spatial space)
We have got want we want!

Note: local extrema is obtained by comparing the examined location with all the other 26 points around it in the scale-space.

If the local extrema of scale-normalized LoG is achieved at p, two things of p can be determined: its spatial location and characteristic scale!
Scale-normalized LoG

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}, \quad g \] is the Gaussian function
Scale-normalized LoG

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

\[\nabla^2_{\text{norm}} g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right) \]
Scale-Invariant Point Detection: Example
Scale-Invariant Point Detection: Example

sigma = 11.9912
Scale-Invariant Point Detection: Example
Efficient implementation

Approximating the scale-normalized LoG with a difference of Gaussians:

\[L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right) \]

(scale-normalized LoG)

\[DoG = G(x, y, k\sigma) - G(x, y, \sigma) \]

(Difference of Gaussians)

where Gaussian is

\[G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

Assignment!

Lin ZHANG, SSE, 2021
DoG

• Difference of Gaussians as approximation of scale-normalized LoG
 - This is used e.g. in Lowe’s SIFT pipeline for feature detection.

• Advantages
 - No need to compute 2nd derivatives
 - Gaussians are computed anyway, e.g. in a Gaussian pyramid.

Slide credit: Bastian Leibe

Lin ZHANG, SSE, 2021
Scale-Invariant Point Detection

- **Given**: Two images of the same scene with a large scale difference between them.
- **Goal**: Find the same interest points independently in each image.
- **Solution**: Search for maxima of suitable functions in scale and in space (over the image).

- Two strategies
 - scale-normalized LoG
 - Difference-of-Gaussian (DoG) as a fast approximation
 - These can be used either on their own, or in combinations with single-scale keypoint detectors (Harris, Hessian).
Examples
Examples

Interest points found by DoG extrema

What does the arrows mean?

Next lecture!!